More than 40 science and engineering graduate students, postdoctoral fellows and early career researchers from across the Asia-Oceania region attended the first Asia Oceania Forum (AOF) Synchrotron Radiation School in early June hosted by the ANSTO at the Australian Synchrotron and supported by the Australian Institute of Nuclear Science and Engineering (AINSE). 

The participants, who are interested in pursuing a career in synchrotron radiation-related fields, had the opportunity to attend a range of lectures and take part in practical sessions on six of the ten beamlines at the Australia Synchrotron.

Those who attended the week-long school came from China, Thailand, Japan, Korea, Taiwan, India, Singapore, New Zealand and within Australia to learn more about the theory and applications of synchrotron radiation for a wide range of science and technology research.

“We were greatly pleased by the level of interest in synchrotron technologies, which are proving to be invaluable across a range of applications and delighted to share Australian and international expertise with the group,” said Prof Richard Garrett, Senior Advisor, Strategic Projects, ANSTO, who was Co-Chair of the school with Dr Mike James, Head of Science at the Australian Synchrotron.

Guest lecturers travelled to Australia from South Korea and the US.

In addition to a general introduction to synchrotron radiation, light source, beamlines, and detectors, the curriculum included sessions on the techniques used on the Australian Synchrotron beamlines, such as medical imaging, powder X-ray diffraction, and micro fluorescence.

At the conclusion of the lectures and practical sessions, participants gave presentations based on their beamline investigations. 

“Actual hands on experience with the beamlines is invaluable for planning research projects and understanding the tremendous analytical capabilities of the instruments,” said Dr James.

The Asia Oceania Forum for Synchrotron Radiation Research (AOFSRR) is an association of the eight synchrotron operating and user nations in the Asian region: China, Thailand, Japan, Korea, Taiwan, India, Singapore and Australia,. Its mission is to strengthen regional cooperation in, and to promote the advancement of, synchrotron radiation research. Three additional countries are associate members: New Zealand, Malaysia and Vietnam.

ANSTO has had a close association with the AOFSRR since its inception in 2006, when it operated the Australian Synchrotron Research Program which joined the Forum as a foundation member representing Australia. Since 2012 ANSTO has served as financial manager of the AOFSRR, to facilitate the payment of membership fees by the eight full member nations.

The main activities of the AOFSRR are to organise an annual workshop and an annual synchrotron school. The Japanese SPring8 facility hosted the school, then known as the Cheiron School, from 2007 until 2015. This has now been replaced by the AOF Synchrotron School which will rotate among the 8 member countries. The next school will be held in South Korea, followed by Thailand.

Advanced imaging reveals unusual, unseen patterns in seabird feathers

The identification of essential chemical elements in the feathers of long-distance migratory seabirds using advanced X-ray imaging techniques promises new insights into the underlying physiological processes behind feather growth.

In research published in Nature Scientific Reports, a team of investigators led by ANSTO biologist Nicholas Howell and Prof Richard Banati provided evidence of previously unseen spatial patterns in the distribution of metals that do not appear to be linked to physical characteristics in the feathers.

Because the patterns are not linked to pigmentation, thickness or other structural characteristics in the feathers, the authors suggest another unidentified mechanism may be at work.

“Our collaboration has produced some remarkable depictions of the feathers that let us see into complex and pattern-forming, biochemical processes in cells,” said Prof Banati.

High resolution images collected using the X-ray fluorescence microprobe and Maia spectroscopic detector at the Australian Synchrotron, revealed independent distribution of zinc, calcium, bromine, copper and iron.

In this investigation, the technique was applied to the whole feather, and required no subsampling or extraction procedures  in order to accurately identify elements.

 “Using this powerful instrument and Maia detector, David Paterson and Daryl Howard were able to scan samples that were several centimetres in length at micron resolution,” said Howell.

X-ray fluorescence microscopy allows you to view hard biological structures in their natural state. The detector system speeds up the scanning of the sample in real time and delivers data at unprecedented resolution.

The images, which have previously unachieved sensitivity and resolution, provide a distribution map of a range of chemical elements in the feather.

Understanding the development of bird feathers is important for understanding the evolution of birds, formation of organs, tissue regeneration and the health status of individual animals.

The findings also have significant potential application more broadly in developmental biology.

“The same basic biochemical mechanisms that allow feathers to develop in birds are at work in other animals and humans, “said Howell.

For example, the identification of a distinct, repetitious pattern in the concentration of zinc in all samples was of particular interest.

Zinc is an essential element in birds for growth, the formation of enzymes, the development of the skeleton and a range of physiological functions.

These zinc bands resembled but were not related to distinct growth bands.

The exact mechanism that leads to the regular deposits of zinc is unknown but the scientists  noticed that the number of zinc bands appears to be the same as the number of days the feather grows, e.g. the duration of the moulting period.

“We do not have entirely accurate data on the rate of feather growth in a migratory seabird, which needs to be observed under conditions of the animal’s natural life-cycle,” said Howell.

“Nonetheless, such highly regular, biological patterns hold important information , because similar to tree rings , they are a natural time stamp that records events during the growth of these patterns.” said Howell.

Therefore, the patterns in the feathers may be useful in assessing the bird’s health and nutritional status retrospectively, in the way that tree rings indicate  past environmental events, such as droughts and floods.

The feathers came from three species of migratory shearwaters, birds that are known to travel over 60,000 kilometres per year on their migration to breeding areas.

Mr Howell said none of the work would have been possible without the painstaking field work in remote locations.

Single breast and wing feathers from the fleshfooted, streaked and short-tailed shearwater were collected on Lord Howe Island, several Japanese islands and Bundeena Beach (NSW) under the direction of co-author Dr Jennifer Lavers of the Institute of Marine and Antarctic Studies at the University of Tasmania.

 “It is very difficult to image and measure metals in biological samples, but it is something we can do with a variety of techniques at ANSTO using X-rays, neutrons and isotopes,” said Howell.

Last year, a similar approach was used to detect and measure strontium in the vertebrae of sharks.

The study revealed that the strontium correlated with the age of the individual and allowed age to be determined without reference to growth bands.

 

Infrared (IR) imaging technology at the Australian Synchrotron, developed specifically for carbon fibre analysis, has contributed to a better understanding of chemical changes that affect structure in the production of high-performance carbon fibres using a precursor material.

A research collaboration led by Carbon Nexus, a global carbon fibre research facility at Deakin UniversitySwinburne University of Technology and members of the Infrared Microspectroscopy team at the Australian Synchrotron, has just published a paper in the Journal of Materials Chemistry A, that identified and helped to explain important structural changes that occur during the production of carbon fibres.

The research was undertaken to elucidate the exact chemical transformation occurring during the heat treatment of polyacrylonitrile (PAN), which produced structural changes.

Left to right: Nishar Hameed, Maxime Maghe and Srinivas Nunna on the Australian Synchrotron Infrared Spectroscopy beamline.

The majority of commercial carbon fibres are manufactured from PAN but there has been an imperfection that occurred during production that affected its material properties. 

Because the conversion of PAN to carbon fibre did not occur evenly across the fibre, it resulted in a skin-core structure. 

Manufacturers want to prevent the formation of the skin-core structure in order to enhance the strength of the fibres.

The research lead by Dr Nishar Hameed provides the first quantitative definition on the chemical structure development along the radial direction of PAN fibres using high-resolution IR imaging. 

“Although it has been more than half a century that carbon fibres were first developed, the exact chemical transformations and the actual structure development during heat treatment is still unknown”. 

“The most significant scientific outcome of this study is that the critical chemical reactions for structure development were found to be occurring at a faster rate in the core of the fibre during heating, thus disrupting the more than 50-year-old belief that this reaction occurs at the periphery of the fibre due to direct heat.”

A multitude of experimental techniques including IR spectroscopy confirmed that structural differences evolved along the radial direction of the fibres, which produced the imperfection.

The difference between skin and core in stabilised fibres evolved from differences in the cross linking mechanism of molecular chains from the skin to the core. 

The information could potentially help manufacturers improve the production process and lead to better fibres.

“Using a technique called Attenuated Total Reflection (ATR) to focus the synchrotron beam, the IR beamline allowed the research team to acquire images across individual fibres, to see where carbon-carbon triple bonds in the PAN were being converted to double bonds,” said Dr Mark Tobin, Principal Scientist, IR, at the Australian Synchrotron, who is a co-author with Dr Pimm Vongsvivut and Dr Keith Bambery.

“Previous IR studies have been conducted on fibre bundles and powdered fibres, while we were able to analyse the cross section of single filaments.” 

To acquire detailed images of the fibres, which are only 12 microns across, the IR team modified the beamline for the experiment using a highly polished germanium crystal to focus the IR beam onto the fibres.

Lead author Srinivas Nunna received a post graduate research award from the Australian Institute of Nuclear Science and Engineering (AINSE) to support the study.